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Abstract

We outline a new systematic approach to extracting high resolution information from HAADF–

STEM images which will be beneficial to the characterization of beam sensitive materials. The

idea is to treat several, possibly many low electron dose images with specially adapted digital

image processing concepts at a minimum allowable spatial resolution. Our goal is to keep the

overall cumulative electron dose as low as possible while still staying close to an acceptable level

of physical resolution. We shall present the main conceptual imaging concepts and restoration

methods that we believe are suitable for carrying out such a program and, in particular, allow one

to correct special acquisition artifacts which result in blurring, aliasing, rastering distortions and

noise.
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Modern electron microscopic imaging has reached resolutions significantly better than

100pm which allows for unprecedented measurements of the composition and structure of

materials [1–3]. However, one faces several severe obstacles to fully exploiting the informa-

tion provided by aberration-corrected instruments. On the one hand, one needs to constantly

remediate and reduce environmental perturbations such as air flow, acoustic noise, floor vi-

brations, AC and DC magnetic fields, and temperature fluctuations. On the other hand,

high resolution and a good signal to noise ratio requires a high density of electrons per

square nanometer. Unfortunately, soft materials are very susceptible to beam damage, and

can only be visualized with low dose beams, resulting in poor resolution and a prohibitively

low signal to noise ratio. Imaging matter using electron microscopes, in particular STEM

(scanning transmission electron microscopes, see [4], [5]), will become increasingly important

in the near future, especially in biology.

Our goal is therefore to compensate for the required lower dose by more sophisticated

image processing techniques. In what follows we outline a strategy addressing this question.

The guiding aspects for our approach can be summarized as follows: Rastering of the beam

across the sample enables certain electron imaging and spectroscopic techniques such as

mapping by energy dispersive X-ray (EDX) spectroscopy, electron energy loss spectroscopy

(EELS) and annular dark-field imaging (ADF). These signals can be obtained simultane-

ously, allowing direct correlation of image and spectroscopic data. By using a STEM and

a high-angle annular detector, it is possible to obtain atomic resolution images where the

contrast is directly related to the atomic number (≈ Z2). This is in contrast to conventional

high resolution electron microscopy, which uses phase-contrast, and therefore produces re-

sults which need simulation to aid in interpretation. As for beam sensitivity, a critical issue

in electron microscopy is the amount of dose needed to produce an image. Higher dose

scans can damage the specimen while lower dose scans result in very low signal to noise

ratio. In STEM mode, the electron dose onto the sample can be controlled in a variety of

ways. The number of electrons per unit time can be varied by changing the demagnification

of the electron source through the strength of the first condenser lens. The dwell time of

the probe is typically varied between 7µs and 64µs per pixel in practice, although a much

larger range is possible. The size of the image can be varied from a very small number of

pixels in a frame (256 × 256) to over 64 million pixels per image (8192 × 8192). Finally,

the magnification of the image sets the area of the specimen exposed to the electrons and
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thereby affects the dose per unit area onto the specimen.

Images produced by electron microscopes offer only an indirect reflection of reality. One

measures the distribution of the intensity of electron scattering at a detector. These inten-

sities depend upon the structure and composition of the sample, the information transfer

properties of the microscope as well as uncontrolled perturbations by external stimuli.

This has two major conceptual consequences. The first one concerns the overall goal. We

do not attempt to develop techniques that aim at reaching a resolution that is higher than

the one permitted by the hardware. When talking about superresolution we always mean

to recover the level of resolution set by the microscope, but by using a time series of low

resolution - viz. low dose - images. Let us briefly recall the standard way of producing high

resolution reconstructions from a series of low resolution/noisy images. Several observation

models that relate the original high-resolution image to the observed low-resolution micro-

graphs have been proposed in the literature [6]. These are classically formulated as a global

model (with local noise n) of the form

yt = (D · Bt · Mt)x + nt, (1)

where x is the desired high-resolution image which is assumed constant during the acquisition

of the multiple micrographs, except for any motion and degradation allowed by the model.

Therefore, the observed low-resolution images result from warping (Mt), blurring (Bt), and

subsampling (D) operators performed on x. It is also assumed that each micrograph is

corrupted by additive noise nt only. We shall see below that this paradigm is not applicable

in this form.

The second consequence, further enhanced by the fact that new concepts are needed, is

that the methods developed are first backed by experiments with materials that exhibit very

little beam sensitivity. In particular, inorganic materials allow us to validate our methods by

comparing a reconstruction from low resolution images with a high resolution counterpart

of the same object. Therefore we focus first on inorganic materials which we understand

well and that have proven to be stable under HAADF-STEM conditions(see e.g. [7]). In

particular, the M1 catalyst (Fig. 1), a Mo-V-Te-Nb-oxide, has various properties that lend

themselves to our initial investigations: (1) it has well-understood contrast variations along

the 〈001〉 projection, (2) beam-sensitive Te contained in pores of the metal oxide framework

can be used to monitor electron beam-induced damage over time series while the surrounding
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Figure 1: High-resolution HAADF STEM micrograph of the M1 catalyst.

structure does not deteriorate, and (3) defects that can be used as fiducials.

An example: In Fig. 1, the white oval shows pores in the metal oxide framework con-

taining Te whose evaporation can be used to monitor long term exposure to electron beams.

Thus, measuring time series of M1 at lower resolutions allows us to compare the recon-

structions with micrographs taken at higher resolutions and thereby validate our algorithms

and theoretical approaches which guide the treatment of more and more beam sensitive

materials.

Of course, one would be able to reduce beam damage (in expectation) if the total accumu-

lated dose used to produce several low resolution images could be kept even below the dose

needed for a single high resolution image while still recovering the same information from

the low resolution images. But even if in both scenarios the same total dose was necessary,

the damage due to heating effects would clearly be smaller when taking successive low dose

images. Whether a temporal stretching also has a beneficial relaxation effect on the other

sources of beam damage is an open question on which the intended research may actually

shed some light.

Such principle advantages come at a price however. The scanning process takes time

during which the specimen moves due to electromagnetic, mechanical, or acoustic perturba-

tions. The overall resulting motion is significant, even for a single frame, but all the more
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so when taking several images of the same specimen.

Moreover, this motion is very complex. A global drift is typically overlaid byjitter. (For

illustration, see Fig. 4 and the discussion below.) Tracking and estimating this motion by

a sufficiently accurate model Mt in (1) based on low resolution possibly very noisy data, is

not feasible. Thus, standard superresolution concepts as described above that are based on

registration and motion tracking are not applicable.

We wish to propose an alternative strategy that is motivated by the above observations

and can be summarized as follows.

(i) Time series: As before a high resolution image is to be recovered from a timeseries of

HAADF STEM micrographs yt of the same object, where the “time” t is the frame index

and runs through a finite set.

(ii) The key tool: Denoising based on time series is based on averaging the same specimen

portion appearing in different frames. As explained above it is impossible to identify such

portions from the low resolution frames. It is therefore crucial to employ a technique that

avoids an explicit registration and motion tracking. The concept of nonlocal means, devel-

oped by Buades, Coll and Morel in [8] as a denoising algorithm, offers exactly this property.

The key point is to average image portions whose intensity distributions are close to each

other. This can be done as follows. With every pixel position p we associate a neighborhood

Np centered at p in as well as a (small) patch R(p, t) in the frame yt also centered at p. We

wish to produce an updated (target) value z(p, t) at position p in the frame at t from source

values y(p′, t′) at positions p′ in a (usually different) frame at t′ by computing

z(p, t) =

∑

p′∈Np,t′∈Nt
w(p, p′, t, t′)y(p′, t′)

∑

p′∈Np,t′∈Nt
w(p, p′, t, t′)

(2)

where Nt denotes a “time neighborhood” of t, i.e. a collection of timewise neighboring frames

that are to be taken into account for the averaging process. Here the weights w(p, p′, t, t′)

have the form

w(p, p′, t, t′) := exp
{

−
dist

(

R(p, t), R(p′, t′)
)2

2σ2

}

, (3)

where σ is another tuning parameter that stands for the variance of the data and the

distance dist
(

R(p, t), R(p′, t′)
)

between two patches is to quantify the similarity between

those patches. The distance notion is a crucial parameter of such a scheme which, in

particular, allows us to incorporate knowledge about data acquisition and special artifacts.

We postpone the discussion of this issue and are content for the time being with the perhaps
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simplest version which views the patch R(p, t) as a vector of intensity values and applies the

Euclidean norm to compare two patches

dist
(

R(p, t), R(p′, t′)
)

:= ‖R(p, t) − R(p′, t′)‖2. (4)

A few comments on the rationale of such schemes are in order. Obviously, in principle the

weight assigned to a source value y(p′, t′) is larger as the distance between the corresponding

intensities for the respective patches is smaller, regardless of the spatial distance between the

respective pixel positions. Thus, in contrast to conventional averaging techniques, closeness

in the range is emphasized rather than in the domain, thereby enabling tracking of local

jitter (see Fig. 2). The search for similar patches is only limited by the search neighborhood

Np which could be chosen as a complete frame. However, this would significantly increase the

computational cost. On the other hand, too many elements participating in the averaging

will increase blurring effects. Therefore, a judicious (data dependent) choice of the search

neighborhoods as well as of the variance σ is important regarding quality and efficiency.

(a) (b) (c) (d)

Figure 2: (Color online) (a) patch around central pixel (in red); (b) neighborhood (in blue) of

central pixel hosting comparison patches; (c) support of weight function for the comparison patches

which equals the neighborhood in (b); (d) position (in red) of updated pixel value in upscaled

image.

While the main issue is to get rid of noise caused by low dose, a limited range of increased

spatial resolution can be incorporated as well. The basic premise for increasing the spatial

resolution is the availability of multiple images taken from the same object (which in typical

applications represent different views of the same scene). The low-resolution images are

subsampled (aliased) as well as distorted with subpixel precision. If the images have aliasing

and different subpixel distortions, the new information contained in each low-resolution

micrograph can be exploited to obtain the desired high-resolution image.
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Of course, a concrete scheme based on nonlocal means requires a proper specification

of all the parameters (patch shape/size, spatial neighborhood size, time neighborhood size,

variance, distance) which will be elaborated on and analyzed in a forthcoming paper[9].

Figure 3 shows a typical result for the catalyst M1.

Original from series Normalized (before deblurring)

Figure 3: Super-resolution reconstruction by nonlocal means of a timeseries of low resolution

HAADF STEM micrographs of the catalyst M1 taken with exposure of 7µs per pixel.

(iii) A two-stage approach: Nonlocal means alone does not yet provide super-resolution.

On the one hand, it should be complemented by a deblurring step which we shall briefly

comment on below. On the other hand, in order to exploit the full potential of nonlocal

means we propose an iterated averaging procedure which is outlined next.

Recall that the warping that occurs during the image acquisition in HAADF STEM may

contain global and local translations, rastering distortion, local rotations, and so on, whose

effect may grow over time and hamper the feature identification in subsequent images. As

mentioned earlier a very low signal to noise ratio, as well as an unknown complex motion,

prevent a reliable identification of alike patches in different frames. However, since the

scanning of a low resolution frame takes relatively little time, one expects correspondingly

milder motion effects within each single frame. Moreover, structures like the M1 catalyst

exhibit a stable base pattern.

The first stage - Iterated nonlocal averaging - from spatial width to time depth: Therefore
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a first normalization pass of nonlocal means should use a small time neighborhood Nt and

a relatively large spatial neighborhood Np with a simple weights and distance notion such

as (3, 4). As a result one obtains a new time series of smoothed frames, see Fig. 3. These

frames are now better suited for identifying alike image portions in consecutive frames

and corresponding local distortions caused by small rotations or shearing. Now it makes

sense to employ more subtle distance notions adapted to the specific features of STEM

imaging. Namely, to replace the neighborhood Np × Nt, from which (p′, t′) is selected,

with a (smaller) domain N (p, t) that respects the frame-to-frame motion detected in the

first pass. For a detailed elaboration of this issue we refer to [9]. Iterating further passes

of nonlocal means with improved similarity criteria, one can gradually decrease the size

of spatial neighborhoods while increasing time neighborhoods so as to average eventually

only image patches that correspond to each other. It is important to stress though that

these iterative passes will always apply to the original data, just using upgraded information

concerning local registration extracted from the intermediate frames. In a way such an

iterative procedure may be viewed as gradually refining the image formation in HAADF

STEM and modeling the distortions encountered during the imaging process. Moreover,

from the possible change of the weights over time one may be able to learn more about

beam damage.

(a) A cropped portion of original

checkerboard test pattern.

(b) Applying local motion as that diagnosed

in Fig. 3 in the cropped area.

Figure 4: Effect of diagnosed local motion estimated by non-local means analysis when applied to

a test pattern. The weights are those used for the images in Fig. 3.
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The second stage - Deblurring: Finally the iteration should be concluded with a deblur-

ring step, which aims at compensating the averaging effect introduced in the first stage.

Here it is natural to employ a point spread function generated from the data and our first

experiments look promising. Moreover, we plan to use sparsity recovering techniques based

on regularization with ℓ1 or total variation penalties (see [10]).

(a) assembled image (b) its Fourier transform

Figure 5: Result of assembling 11 images.

As an example of the success of our routine we present the result of the first stage

assembling 11 consecutive low dose micrographs of M1 catalyst in Fig. 5. In (a) only the

portion of the image corresponding to the ones from Fig. 3 is shown. It is remarkable that the

Fourier transform of the result exhibits the same characteristics as the ones of the originals

which cannot be claimed for vast majority of the image processing approaches.

We have sketched a new approach to processing STEM images so as to obtain high

resolution information from time series of low resolution/low dose frames. Current research

focuses on analyzing the effects and identifying suitable choices of the involved scheme

parameters. The scheme will then be applied to more and more beam sensitive materials

beginning with zeolites. Moreover, we emphasize that the method offers various diagnostic

tools. For instance, the variation of the weights over time may shed some light on beam

damage mechanisms and their causes. Applying the weights to simple checkerboard test

patterns helps visualizing the motion of the specimen during the imaging process which is

hoped to better understand it. This work will be reported in [9].
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